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Using triaxial magnetic fields to create high susceptibility particle composites

James E. Martin, Eugene Venturini, Gerald L. Gulley,* and Jonathan Williamson
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421, USA

~Received 16 April 2003; revised manuscript received 23 October 2003; published 27 February 2004!

We report on the use of triaxial magnetic fields to create a variety of isotropic and anisotropic magnetic
particle/polymer composites with significantly enhanced magnetic susceptibilities. A triaxial field is a super-
position of three orthogonal ac magnetic fields, each generated by a Helmholtz coil in series resonance with a
tunable capacitor bank. Field frequencies are in the range of 150–400 Hz. Because both the field amplitudes
and frequencies can be varied, a rich variety of structures can be created. Perhaps the most unusual effects
occur when either two or three of the field components are heterodyned to give beat frequencies on the order
of 1 Hz. This leads to a striking particle dynamics that evolves into surprising structures during resin gelation.
These structures are found to have perhaps the highest susceptibility that a particle composite can have. The
susceptibility anisotropy of these composites can be controlled over a wide range by judicious adjustment of
the relative field amplitudes. These experimental data are supported by large-scale Brownian dynamics simu-
lations of the complex many-body interactions that occur in triaxial magnetic fields. These simulations show
that athermal three-dimensional field heterodyning leads to structures with a susceptibility that is as high as that
achieved with thermal annealing. Thus with coherent particle motions we can achieve magnetostatic energies
that are quite close to the ground state.

DOI: 10.1103/PhysRevE.69.021508 PACS number~s!: 83.80.Gv, 75.50.Tt, 75.60.Ej, 81.05.Qk
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INTRODUCTION

Motivation

In a recent paper@1# it has been shown that uniaxial o
biaxial ~e.g., rotating! magnetic fields can be used to crea
structured magnetic particle-polymer composites with
hanced magnetic properties along the direction of the st
turing field. Relative to a random particle composite, t
susceptibility of uniaxial field-structured composites~FSC’s!
is enhanced along one principal direction, and suppres
along the other two, and the converse holds for biax
FSC’s. In this paper it was shown through a mean-fi
theory that the sum of the inverse magnetic susceptibili
along three principal directions is invariant to structuring,
that enhancements must be balanced by suppressions.
invariant was demonstrated in experiments on a variety
composites containing carbonyl iron particles. The existe
of this invariant implies that it is not possible to organize t
particles in such a way as to enhance the susceptibility o
FSC along all three principal directions.

In fact, we have recently shown through theory and sim
lation that triaxial magnetic fieldscan be used to create par
ticle composites with significant susceptibility enhanceme
in all three principal directions@2#. Triaxial FSC’s violate the
inverse susceptibility sum rule because of large local-fi
fluctuations that render a mean-field approximation inac
rate. The purpose of this paper is to demonstrate signific
susceptibility enhancements in isotropic FSC’s experim
tally, and to explore how triaxial magnetic fields can also
used to create optimized anisotropic composites. Particle
teractions in triaxial magnetic fields are strange, and so
discussion of this will help to motivate this paper.

*On leave from Dominican University, Dept. of Natural Scienc
River Forest, IL 60305.
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Interactions in a triaxial field

When a random suspension of magnetically soft partic
is exposed to a uniaxial magnetic field, dipoles are indu
that are closely aligned with the applied field. The partic
will move under the influence of the dipolar interactions w
nearby particles in such a fashion as to increase their dip
moments, forming complex chainlike structures that redu
the suspension magnetostatic energy. We call interaction
a uniaxial fieldpositivedipolar interactions. These interac
tions are invariant to inversion of the field, since this mere
inverts the sign of each dipole and the interactions depend
the square of the dipole moment. Anegativedipolar interac-
tion between two particles can in principal be created
inverting the field at only one of the dipoles, but this
impractical, and in any case it would not be possible to c
ate negative dipole interactions between all particles w
such an approach.

It is possible to create a time-averagenegativedipole in-
teraction between particles by subjecting the suspension
rapidly changing biaxial~e.g., rotating! magnetic field in a
plane normal to the uniaxial field described above. The
duced dipole moments create a net average attractive in
action in the plane of the field, resulting in the formation
complex sheetlike structures@3#. A simple first-order calcu-
lation @4# shows that the average interaction is just the op
site of a positive dipolar interaction, so that in a balanc
triaxial field, where both the uniaxial and biaxial fields a
applied simultaneously~and with all three field component
having equal rms amplitudes!, one might expect no interac
tion at all. Experiments show that this is not the case, and
exact point dipole calculation shows that the negative dipo
interactions created by a biaxial field are not exactly eq
and opposite to the positive dipolar interactions.

This lack of perfect symmetry between interactions
uniaxial and biaxial fields is due to the fact that the partic

,
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MARTIN et al. PHYSICAL REVIEW E 69, 021508 ~2004!
magnetize in the local field, not the bare applied field, wh
can be viewed as a sum of the macroscopic field and
microscopic field. The smooth macroscopic field is the s
of the applied field plus the Lorentz cavity field~provided
demagnetizing fields due to the sample shape can be e
nated!. The lumpy microscopic field is due to the near
dipoles. Each dipole moment thus has parts due to the m
roscopic and microscopic fields. It can be shown that i
balanced triaxial field the part of the moments due to
macroscopic field leads to zero average interaction, but
part due to the microscopic field leads to strong and comp
many-body interactions. Complex because the interaction
tween three contacting particles cannot even be appr
mately described by the sum of the pair potential. Becaus
this all of the usual things one might expect of an isotro
system with attractive interactions, such as the formation
periodic lattices, fail to occur. Instead, particle structu
with molecularlike geometries are stable, and at equilibri
a suspension forms a particle foam@2#.

By the judicious selection of field component amplitud
and frequencies, a rich variety of FSC’s can be formed
triaxial magnetic fields. If all three field frequencies a
widely separated a particle gel forms, Fig. 1~top!. If two of
the field component frequencies are sufficiently close
gether that the particles can follow the beat frequency, the
striking oscillation occurs, which we call 2-d heterodynin
that leads to the formation of a honeycomb structure, Fig
~center!. If all three component frequencies are close, a co
plex collective dynamics occurs, which we call 3-d hete
dyning, that leads to a particle foam, Fig. 1~bottom!. Het-
erodyne structures are found to have highly optimiz
properties. To create structures with anisotropic magn
properties the rms field amplitudes can be imbalanced
this paper we consider both positive and negative unia
biases, which lead to composites with enhanced suscept
ties along one or two principal directions, respectively.

Optimizing the magnetic susceptibility also optimizes is
morphic properties, such as the dielectric constant and t
mal and electrical conductivity~not quite isomorphic, but
still optimized!. Thus we believe that this new class of tr
axial field-structured composites~FSC’s! hold great promise
as practical materials for many applications@5#.

Background

Although this is a report of the magnetic properties
particle composites structured by triaxial fields, there ha
been several other studies of the magnetic properties of
terials structured into chains by a uniaxial field. O’Gra
et al. @6# created two different ferrofluids by the thermolys
of di-cobalt octacarbonyl in toluene, controlling the partic
size by appropriate surfactant selection. This resulted i
superparamagnetic particle sample of 5.0-nm particles, a
ferromagnetic sample of 12.0-nm particles. These nano
ticles apparently consisted of essentially single crystal
domains, so that texture could be introduced into the sam
by particle alignment. In the superparamagnetic sampl
significant increase in the susceptibility was found when
samples were field cooled, which oriented the particles in
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frozen solvent, leading to significant texture, since each p
ticle consists of essentially a single crystalline domain. In
ferromagnetic particle sample a significant increase in
remanence was observed in a field-cooled sample, again
to particle rotation along an easy axis creating signific
texture. An analysis in terms of texture is given, but it is n

FIG. 1. Sample structures made in triaxial magnetic fields. I
triaxial field a particle gel forms~top!. In 2-d heterodyning a hon-
eycomb structure forms~center!. 3-d heterodyning leads to a pa
ticle foam~bottom!. These composites were made with large, 50m
Ni particles to facilitate optical imaging. The incident light imag
are 1 cm across.
8-2
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USING TRIAXIAL MAGNETIC FIELDS TO CREATE . . . PHYSICAL REVIEW E 69, 021508 ~2004!
clear if the particles formed chains, though at least the la
particles certainly should have. Brugelet al. @7# made plate-
lets by ball milling a thin film of Metglas 2605SC. The plat
lets were oriented in a magnetic field of 0.4 T, due to
relatively small demagnetizing field in the plane of the pla
lets, and the polymer resin was then cured. Shifts in
magnetization curves of these materials were found wh
they attributed to particle alignment, though it is possib
that the observed shifts were partly due to the strong lo
fields produced by particle chains. Jinet al. @8,9# have inves-
tigated uniaxial FSC’s of 20 and 75-mm Ni particles coated
with a thin layer of Ag. The conductivity of these materia
in response to applied strains was the principal goal,
some magnetization measurements were reported that
cated that these materials have isotropic magnetic proper
This is not what we find for uniaxial FSC’s, but perhaps th
assessment was intended to be qualitative.

Studies of the magnetic properties of sheetlike part
aggregates, such as those that form in rotating fields,
apparently limited to Fabreet al. @10#, who created a ‘‘Smec-
tic Ferrofluid’’—sheets of superparamagnetic maghem
particles—by swelling a lamellar micelle solution of th
surfactant/cosurfactant system sodium dodecyl sulf
pentanol with nanosize maghemite in cyclohexane to form
lamellar microemulsion. Due to the dependence of demag
tizing factors on lamellar orientation, these fluid phases
ent in modest fields~100 G!, so that the magnetic field i
parallel to the lamallae. Measurements of the magnetiza
of these phases was not reported, though one would exp
large difference between cooled and field-cooled sample
the matrix could be frozen without upsetting the phase
bility of the microemulsion.

Creating optimal particle composites

The goal of this paper is to use triaxial magnetic fields
substantially improve the susceptibility of isotropic and a
isotropic particle composites. That this is possible with
axial fields is an issue that merits some discussion.

Uniaxial fields

Consider first the much simpler problem of optimizing t
susceptibility of a particle composite along a single directi
Tao and Sun@11# showed that the magnetic ground state
such a system occurs when the particles are packed in
body-centered-tetragonal~bct! lattice, with the unique axis
aligned with the applied field. In this configuration it
shown as follows that the composite susceptibility will
optimized in the direction of the structuring field. In mk
units the energy of an induced dipole in an applied fieldH0
is U52 1

2 m0m•H0 , wherem is the dipole moment of eac
particle and is proportional to the local field. The samp
magnetizationM is the dipole density,M5fm/v, wheref
is the particle volume fraction andv is the dipole volume.
The composite susceptibility is the magnetization per u
field, which, noting that the moments are parallel to the fie
can be expressed asx5fudipole/ufield where the energy den
sity of each dipole isudipole5U/v and the energy density o
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the field isufield52 1
2 H0B0 . Thus minimizing the energy o

a dipole maximizes the susceptibility.
The magnetophoretic force on a particle is in the direct

of the gradient of that component of the local field which
parallel to the particle moment. Thus in the absence of th
mal fluctuations each particle will move to increase its m
ment, enhancing the composite susceptibility. Brownian
namics simulations of suspensions of spherical particles
show a progression to the bct structure, with a concomit
increase in the susceptibility@12#.

The experimental situation is more complex for three r
sons: particle roughness creates strong local minima, sh
and size polydispersity eliminate the possibility of lattice fo
mation, and Brownian forces are negligible compared
gravitational forces. Because of the latter, it is not possible
reduce the field to the point where dipolar forces are com
rable to Brownian forces, as the suspension will simply se
ment. Real composites made in a uniaxial field thus exh
quenched disorder. One could certainly make composite
density-matched magnetic particles, such as polystyrene
tices filled with magnetite particles, but the particle susc
tibility is then too small for strong collective magnetic e
fects to emerge. The same is true for density-matc
systems created by coating a nonmagnetic particle with m
netic material. Even so, susceptibility enhancements of
have been achieved for uniaxial FSC’s.

Triaxial fields

In a triaxial magnetic field the particles will move to in
crease the composite susceptibility along all three directio
thus maximizing the susceptibility sum. As shown in the d
cussion of heterodyning below, this is because the force
each particle is a simple sum of the forces due to each fi
corresponding to the incoherent interaction of dipole m
ments. The same result could be obtained by applying c
secutive field pulses along thex, y, zdirections.

In our previous paper we computed the susceptibility o
variety of simple structures, finding that a sheet of particl
or a bilayer, had by far the highest susceptibility sum~over
three principal directions! of any structure considered. How
ever, athermal triaxial field simulations gave disappointi
results, because the particles tended to form a network
chains with only modest susceptibility enhancements. Th
mal simulations gave much improved results, showing
formation of a high susceptibility particle foam structur
This particle foam consists of monolayer particle sheets,
can be thought of as a way of embedding a sheet into th
dimensions. But this result does not lead us to a prescrip
for synthesizing optimal composites, because thermal fl
tuations are negligible in our system.

The important finding in our previous paper is that sim
lations of heterodyned triaxial fields can lead to compos
structures with very high susceptibilities, even in the abse
of thermal fluctuations. This then is indeed a prescription
the synthesis of real optimal composite materials. The det
of heterodyning are given below, but the basic idea is that
slow beating of field components causes an oscillation
tween the coherent and incoherent interaction of the dip
moments induced by the three field components. This le
8-3
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MARTIN et al. PHYSICAL REVIEW E 69, 021508 ~2004!
to a complex periodic motion of particle sheets in the s
pension. As the polymer resin gels, its viscosity diverg
continuously, until the sheets can no longer follow the fie
beats. In this stage surprising structures emerge, bot
simulation and experiment. In particular, if all three fie
components are heterodyned, the emergent structure clo
resembles that arising from simulated annealing, indica
that this technique can mimic the effect of Brownian motio

In this paper we first describe the synthesis and charac
ization of these materials, and the simulation method
have developed. This is followed by a discussion of hete
dyning, a report on our experimental and simulation resu
and the development of simple analytical expressions for
susceptibility of the structures we observe.

EXPERIMENT

Sample preparation

A 4–7-mm Ni powder from Goodfellow™ was used t
make all composites for magnetic susceptibility measu
ments, with concentrations in the range of 0.1–30.0 vol
The particles were suspended in a polyester resin~Castin’
Craft™ liquid polymer casting resin! without the use of a
dispersant. After addition of the catalyst, these suspens
were degassed in a vacuum chamber for 3 min, and po
into 1-cm square polystyrene cuvettes. Each cuvette
filled to a height of 1 cm to insure that the demagnetiz
fields are the same in all directions~of course, this is not true
for the anisotropic samples, but in this case it is not so
portant either!. The samples were then structured in the
axial magnetic field until well past the gel point~25 min! and
post-cured in an oven at 70 °C for at least 2 h. These sam
were then accurately machined into 4.00-mm cubes for s
ceptibility measurements. A cube was chosen because
have developed an accurate way to correct for the dema
tizing fields for this shape~below!.

To create a uniform triaxial magnetic field we construct
three nested orthogonal Helmholtz coil pairs. Although
three fields are equivalent, it is useful in much that follows
think of one component as the uniaxial field and the ot
two as forming a biaxial field. The uniaxial field either is ru
dc with a current source or is driven ac with a fixed capac
in series to create a series resonance at 203.7 Hz wit
impedance of'2.6 V. The biaxial field components are ru
ac and are connected to tunable, computer-controlled, se
parallel capacitor banks of our own design to create se
LRC circuits with high quality factors and a resonant impe
ance of '2.2 V. The capacitor banks use high quali
Silicon-Controlled Rectifier capacitors from General Elect
which have high current and voltage specifications and
stray inductance. The banks use 12 capacitors each, spa
from 1 to 100mF, and have;354 000 capacitance value
spanning three decades of capacitance, easily enough to
ate series resonance at selected coil frequencies from'125–
1500 Hz. Potter and Brumfield power relays with a 4-k
standoff are used to switch the capacitors and the 2
switching voltage is supplied through a control board ba
on 4-kV standoff optical isolation relays. These relays
driven by logic pulses from a 96 channel I/O board fro
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National Instruments installed in a Power Macintosh and
controlled by a Labview program. Extremely accurate ca
bration of the capacitors is essential, and was accomplis
with an Agilent 4284A LCR bridge. Driving these circuit
with an ATI model 1504 audio power amplifier with 200 W
per channel it is possible to create magnetic induction fie
as large as 500 G at frequencies up to'1500 Hz in the
smallest coil. Amplifier input signals are provided by
phase-locked Multifunction Synthesizer from Agilent, mod
8904A @13#. During operation, extremely high voltages a
pear across the coil and capacitors, so due regard for sa
must be exercised, mostly through the use of electrical in
lation and safety interlocks.

In some experiments one of the field components w
amplitude modulated. In practice this was the largest c
because this has the lowest quality factor at any given o
ating frequency. The reasonably wide resonance make
possible to drive this coil effectively with a signal that is th
sum of two frequencies as much as a few Hz apart, cau
amplitude modulation at the beat frequency of the two s
nals. Amplitude modulation should not be confused with o
use of the term heterodyning, by which we refer to the be
ing of one field component against another.

Magnetic measurements

Isothermal magnetic hysteresis data were measure
room temperature~295 K! for applied fields between11 and
21 T using a commercial superconducting quantum inter
ence device~SQUID! magnetometer with extended dynam
range ~200 emu!. The extended range allowed the use
relatively large samples~typically 4.0034.0034.00 mm3)
with saturation moments up to 10 mA m2 ~10 emu! for 30 vol
% Ni. These dimensions are much larger than the coarse
of the composites, assuring a representative result. At
maximum field of 1 T these samples were in the reversi
approach-to-saturation regime, minimizing any history
fects in the measurements. The susceptibilities repo
herein were taken from the slope of the magnetization cu
at zero moment for a partial hysteresis loop starting fr
near saturation.

Correcting for demagnetizing fields

Because the samples were machined into cubes it
necessary to correct the susceptibility data for demagneti
fields. To do this we simulated a cubic lattice of dipol
occupying a cubical volume. A 3-d finite difference code w
written to solve the applicable Maxwell equation¹•B
5¹•$@11x(r )#m0H(r )%50 iteratively, and thereby deter
mine the macroscopic field, for a cube of a continuum s
ferromagnet of relative magnetic permeabilitym r placed in
an initially uniform magnetic field@1#. We used a Cartesian
mesh of magnetostatic potentials to represent the cub
permeable material and a substantially larger volume ofm r
51 space surrounding it. The mesh surfaces were se
constant potential or constant electric field, as appropri
which is equivalent to immersing the central cube in an
finite 3-d lattice of its images. These boundary conditio
caused minimal perturbation because a simple cubic lat
8-4
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USING TRIAXIAL MAGNETIC FIELDS TO CREATE . . . PHYSICAL REVIEW E 69, 021508 ~2004!
of identical dipoles produces zero field at a lattice site. T
cubic symmetry provided the additional advantage of allo
ing the computation to be restricted to one-eighth of the to
volume. Results were obtained for several choices of m
coarseness and were extrapolated to an infinitely fine m
A second extrapolation to zero cube size~relative to the full
computational mesh! gave the final result for the macro
scopic field inside the cube.

Because the cube is nonellipsoidal, the macroscopic fi
Hmacro within the cube is not uniform and not generally pa
allel to the applied field, taken to be along thez axis. A
demagnetization factor was therefore defined by averag
the component of the computed macroscopic field along
initial field, n5@H02^Hmacro• ẑ&#/x^Hmacro• ẑ&. The demag-
netization factor depends onx for such a nonellipsoida
shape. The computation was repeated for a range ofx and it
was found that the Pade´ approximate n50.274 40
10.147 35/(x12.5486) fit the data extremely well. Th
measured susceptibilityxm of a cube is related to the tru
susceptibility x by x5xm /@12n(x)xm# and the data are
corrected self-consistently by iterating this expression w
the Pade´ for n, convergence taking only a few iterations. A
a check on the Pade, simulations were done by relaxin
cubic lattice of induced dipoles with a selected value of
susceptibility@14#, using the Clausius-Mossotti equation@15#
to relate the magnetizability per unit volume to the bulk s
ceptibility. Extrapolation to an infinite number of dipole
yielded a demagnetization factor in excellent agreement w
the Pade´.

SIMULATION METHOD

We have reported athermal@1,16# and thermal@12# simu-
lation studies of structure formation in uniaxial and biax
field-structured composites, but these simulations were ba
on the fixed point dipole approximation~i.e., magnetization
in the applied field!, which would give zero interactions in
triaxial field. A new simulation was written to compute in
teractions in a triaxial field. This simulation is exact in th
self-consistent point dipole approximation, the primary d
ference being the consideration of the microscopic field
the computation of the dipole moments. In addition, oth
aspects of the simulation were modified to create a rob
stable code.

In this Brownian dynamics simulation the particles a
essentially hard spheres with induced dipolar interactio
Stokes friction against the solvent, and Brownian moti
The essentially hard spheres have an interaction force
increases as the sixth power of theiroverlap, specifically, f
}(1.03d2Dr )6 for Dr ,1.03d, whered is the particle di-
ameter andDr is the separation distance between the cen
of masses of the particles. Note that ‘‘overlap’’ starts wh
there is actually a 3% gap between the particles. The h
force amplitude can be chosen in a number of ways, but
chose it such that two particles in a balanced triaxial field
unit rms component amplitudes would have a center-of-m
separation equal tod. Larger agglomerates, such as a ch
of particles, will compress somewhat, an issue to which
will return.
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To compute dipole interactions exactly in the point dipo
approximation one must take into account that the field t
magnetizes the dipoles is the local field, which is the appl
field plus the field due to the other dipoles. In addition, t
magnetization of a single isolated particle is actually affec
by the field created by its magnetization@17#, limiting the
susceptibility~mks units! of a spherical particle tox53b,
whereb5(xp2x l)/(31xp12x l) in terms of the intrinsic
susceptibilitiesxp andx l of the materials of which the par
ticle and liquid phases are composed. For magnetic partic
b can be as large as 1; for magnetic holes, as small as21

2.
The moment of a particle of volumev can then be written in
terms of the local field as
m53bvH local, and the force on a dipole isF
5m0m•(¹H local). In a nonheterodyned triaxial field we hav
shown that it is only necessary to sum the force for fie
applied along three orthogonal axes@2#.

The computation of the local field is a subject abo
which there is a certain degree of confusion in the literat
@14#. We use the method of Lorentz~not to be confused with
the Lorentz approximation!, which enables the errors in th
local field to be made as small as desired. We do not
Ewald sums, an alternative method. Our simulation volu
is a cube with cyclic boundary conditions.

The macroscopic field at each dipole is taken to be
applied field plus the Lorentz cavity field, which is exact
M /3 for the spherical cavity we employ~see below!, with M
the sample magnetization. The demagnetizing field due
the overall shape of the simulation volume is zero beca
when we compute the field at each dipole the simulat
volume is always taken to be centered on that dipole, wh
is another way of using the cyclic boundary conditions,
addition to particle reentry.

The microscopic field at each particle is computed
summing the dipole fieldsHm5(1/4pr 3)@3(m• r̂ ) r̂2m#
from all the particles within a spherical cavity with a diam
eter that in practice is not less than 103 the particle diam-
eter. Herer̂ is the unit vector from the particle center o
mass. These nearby dipoles are computed with an effic
neighbors algorithm used in our previous simulations. T
sum of the microscopic field and the Lorentz cavity field
the total field from all the dipoles and their images. Erro
can result from this approach if the cavity size is smaller th
the characteristic internal scale of the structure. In prac
this method is sufficiently precise that when we calculate
sample magnetization by enlarging the spherical cavity
include the entire simulation volume, the magnetizati
changes by'1.0%. Finally, local update is used in the ca
culation of the dipole moments because we found that glo
update could result in oscillation instabilities.

One critical numerical issue arises because a system
soft magnetic particles is perilously close to spontane
magnetization. We have shown above that the susceptib
of a typical soft magnetic particle is quite close to 3.
straightforward calculation shows that a long chain of co
tacting particles will magnetize spontaneously if the parti
susceptibility is 6/z(3)'5, wherez(x) is the Riemann zeta
function. If the chain is slightly compressed to force the p
ticles to overlap, spontaneous magnetization will occur a
8-5
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center-of-mass separation ofd@z(3)/2#1/3'0.844d, at which
point the dipolar force is infinite. Because of the proximity
this force divergence it is easily possible to choose a ‘‘ha
sphere potential that is insufficiently stiff to prevent an a
glomerate from collapsing to a point. There are two wa
around this problem. First, one can choose an extremely
hard sphere potential. This is a poor solution because it le
to force gradients that are extremely large, necessitating
reasonably small time steps for the particle dynamics to
main stable. Second, one can simply limit the dipole fo
and dipole field from overlapping particles to that whic
would obtain if the particles were exactly in contact. Th
approach eliminates black hole formation and enables
use of a hard sphere potential that does not generate te
force gradients, permitting a long time step.

The final simulation issue is stability. Our code is sta
lized by keeping track of the force gradients and limiting t
time step in proportion to the inverse gradient. In practi
during a simulation cycle each particle is locally advanc
through the entire time interval, but this time interval is su
divided into smaller time steps if the program determin
that the force gradients are unacceptably large. This is v
effective in reducing execution time and allows the code
make 10 000 particle runs on a Macintosh G4 in a reason
amount of time. Subdividing the time step is especially
fective because of the way in which we move the particl
Typically one computes the total force on a particle~inter-
acting with perhaps 500–1000 neighbors! and moves it. We
compute the interaction between each pair of particles
move just that pair immediately. The advantage of doing t
is twofold. First, the center of mass of the system is stric
preserved. Second, large force gradients only occur betw
contacting particles, so when a time step is subdivided,
500–1000 interactions do not need to be recomputed. T
are typically six contacting interactions, so the time savin
is substantial. Because of these considerations the cod
remarkably stable: For example, compressing a chain
spheres to 50% overlap gives forces that are'1010 times
that expected in the simulation. This causes no problem
all, the chain simply expands back to its equilibrium leng

Timescale

The athermal equation of motion is obtained by balanc
the dipolar force, against the hydrodynamic drag fo
Fhydro526phav, where a is the particle radius,h is the
liquid viscosity, andv is the particle velocity. The many
body dipolar force cannot be written in closed form, but is
the form Fdip5a2m rm0H0

2fdip , where m054p31027

Wb/(A m) is the vacuum permeability,m r is the relative per-
meability of the liquid phase,H0

2 is the mean-square fiel
amplitude, andfdip is a dimensionless force. This results in
dimensionless equation of the formDu5Ds f(r ,u), where
the dimensionless lengthu5r /2a and the dimensionless tim
is s5t/t with t512ph/m0H0

2. For a nonmagnetic suspend
ing liquid with a viscosityh0 of 1 cp, this characteristic time
t is 1 ms with an applied field ofH055.53103 A/m ~69 Oe!.
The simulation data we generate are for structures that h
evolved for 100 dimensionless time units or less.
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Brownian motion

The magnitude of the Brownian force is set by the para
eter l5pa3m rm0H0

2/kBT. In most of the thermal anneal
reported here, we start withl52.67, anneal for 20 dimen
sionless time units, then linearly ramp temperature~i.e., 1/l!
down to zero in five dimensionless time units. In some of
anneals we start at the same temperature but linearly ram
zero over 25 time units. For 10 000 particles this takes a li
less than 3 days on a 1-GHz Macintosh G4. Heterody
simulations were athermal and took 12 days to achieve
dimensionless time units. The simulation data reported h
represent'225 days of CPU time.

HETERODYNING

Heterodyning is an important experimental technique, a
is used in our simulations, so a detailed discussion of thi
necessary. In our previous paper we discussed the issu
particle energiesin 2-d heterodyning but here we describ
the particleforcesin both 2-d and 3-d heterodyning. We sta
by addressing the issue of dipole interactions in tim
dependent fields. A particle of momentmi is magnetized
by the local field H loc5H01(kÞ iH i ,k , where H i ,k

5(1/4pr ik
3 )@3(mk• r̂ ik) r̂ ik2mk# is the field at thei th particle

due to the kth dipole. The force on this dipole isFi
5m0mi•(¹H local), which can thus be written as a sum
contributions, Fi5m0mi•(kÞ i¹H ik(m k ,r ik). Each contri-
bution f ik to the force is a linear function of the moments,
Fi5(kÞ i f (mi ,mk) where f (lmi ,gmk)5lg f (mi ,mk). To
understand heterodyning we need only consider the co
bution to the total force from any one pair of particles in
particle agglomerate, which should not be taken to mean
interactions in the agglomerate can be described by summ
a pair potential!

Coherence

For simplicity we start with a rotating field in thex-y
plane,H05H0@cos(vt)x̂1sin(vt)ŷ#, and ask what the force
of interaction is when averaged over one cycle of the fie
This field is at an anglef5vt to thex axis, so the instan-
taneous field is H05H0(cosfx̂1sinfŷ). The self-
consistent moment of thekth dipole is mk5mx,k cosf
1my,k sinf, where mx,k is the moment with applied field
along x̂. The interaction force isf i ,k(f)5 f (mx,i cosfx̂
1my,i sinfŷ, mx,k cosf1my,k sinf), or

f k,i~f!5 f k,i~0!cos2 f1 f k,i~p/2!sin2 f1@ f ~mx,i ,my,k!

1 f ~my,i ,mx,k!#cosf sinf. ~1!

To this force add the value when the applied field is at 90°
f, f k,i(f6p/2). The cross terms cancel, with the res
f k,i(f)1 f k,i(f6p/2)5 f k,i(0)1 f k,i(p/2). The interaction
force between a pair of dipoles in an aggregate of dipo
when summed for two orthogonal fieldsapplied at separate
times, is thus independent of the anglef. The average inter-
action force in a rotating field is a simple average of t
forces in orthogonal fields,
8-6
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1
2 f k,i~0!1 1

2 f k,i~p/2!5 1
2 f ~mx,i ,mx,k!1 1

2 f ~my,i ,my,k!,
~2!

so the dipoles are interactingincoherentlywhen thex- and
y-field components are in quadrature phase. In other wo
the dipole moments when the applied field is in thex direc-
tion do not interact with the dipole moments when the a
plied field is in they direction.

Compare this result to applying the field components
phase, to create an ac fieldH05H0@sin(vt)x̂1sin(vt)ŷ# at
45° to thex axis. In this case the cross terms

@ f ~mx,k ,my,k!1 f ~my,k ,mx,k!#cos~p/4!sin~p/4! ~3!

must be added to Eq.~2! to obtain the correct force. This is
coherentinteraction between dipoles, Fig. 2. In heterodyn
fields there is an oscillation between coherent and incohe
interactions.

2-d heterodyning

To create heterodyning in a biaxial field one adjusts
component frequencies to be sufficiently close that the b
frequencyDv is slow enough for the particle suspension

FIG. 2. During 2-d heterodyning there is an oscillation betwe
the coherent and incoherent addition of dipole interactions. Co
ent addition occurs when the moment of dipole 1 with the fi
along thex direction interacts with the moment of dipole 2 with th
field along they direction and vice versa.
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react to it. The field can then be written asH05H0$sin@(v
1Dv/2)t# x̂1sin@(v2Dv/2)t# ŷ% since the relative phase o
the two sinusoids is no longer important. Under the con
tions whereDv!v the sinusoids will oscillate many time
before the ‘‘relative phase’’ terma5Dvt changes, so tha
over a small time interval the field can be thought of asH0
5H0@sin(vt1a)x̂1sin(vt)ŷ# within an arbitrary overall
phase.

Writing the phase asa5np/4, a plot of Hx versusHy
reveals the following sequence:n50 gives a linear~ac! field
at 45°; n51 gives a clockwise elliptical field whose majo
axis is at 45° to thex axis; n52 gives a clockwise rotating
field; n53 gives a clockwise elliptical field whose majo
axis is at 135°;n54 gives a linear~ac! field at 135°;n55
gives a counterclockwise elliptical field whose major axis
at 135°;n56 gives a counterclockwise rotating field;n57
gives a counterclockwise elliptical field whose major axis
at 45°; andn58 restarts the sequence. This is illustrated
Fig. 3. Intermediate values ofn always correspond to ellip
tical fields at either 45° or 135° to thex axis. When this
heterodyned biaxial field is combined with an orthogon
uniaxial field at a significantly different frequency, an osc
lation between a triaxial field and a biaxial field occurs. Th
is apparent in the simulated structures shown in Fig. 4.

A straightforward generalization of Eq.~1! to arbitrary
field component phasing gives the contribution of the fie
produced by dipolek to the force on dipolei at the time
given byf5vt,

f k,i~f!5 f k,i~0!sin2~f1a!1 f k,i~p/2!sin2 f

1@ f ~mx,i ,my,k!1 f ~my,i ,mx,k!#sin~f1a!sinf.

~4!

To obtain the average interaction during a single beat of
‘‘carrier’’ frequencyv we compute the short-time average
Eq. ~4!,

f k,i~a!5 1
2 f k,i~0!1 1

2 f k,i~p/2!1@ f ~mx,i ,my,k!

1 f ~my,i ,mx,k!#cos~Dvt !. ~5!

n
r-
-

s

-
s

FIG. 3. A sequence of Lissa
jous loops ~plots of Hx vs Hy)
during heterodyning. The dipole
interact incoherently when the
loop is circular, and interact co
herently when the loop collapse
to a line.
8-7
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This shows that the incoherent force has added to it a co
ent cross term that is modulated at the heterodyning bea
computer simulations of heterodyning one can use a fo
averaged over the carrier cycle, reducing the computa
time by an enormous amount, and eliminatingv as a vari-
able. This is correct to do when structural evolution times
slow compared to 1/v and fast compared to 1/Dv. During
gelation there is a crossover where structural evolution tim
are slow compared to 1/Dv, as discussed below.

A time average of the heterodyned interaction force E
~5! over a single cycle of the beat frequency recovers
incoherent force in Eq.~2!. Thus if the beat is rapid com
pared to structural organization times the evolution of str
ture is unaffected by the beat.

3-d heterodyning

In three dimensional heterodyning all three fields beat
low frequency. It is not easy to envision the dynamica
changing Lissajou loop in this case. To understand 3-d
erodyning it is useful to write Eq.~5! in the form ~dropping
the subscriptsi,k! f (t)5 1

2 f xx1
1
2 f yy1 f xy cos(Dvxy t). In this

simplified notationf xx refers to the force between dipoles
a uniaxial field of amplitudeH0 applied along thex axis,
whereasf xy5 f yx is the cross term. To obtain the general ca
define the matrixF, such thatFxy5 f xy . Defining the sym-
metric heterodyning matrix

V5F 1 cos~Dvxyt ! cos~Dvxzt !

cos~Dvxyt ! 1 cos~Dvyzt !

cos~Dvxzt ! cos~Dvyzt ! 1
G . ~6!

gives the compact expressionf 5 1
2 VF for the force averaged

over the carrier frequency. One beat frequency is the sum
the other two, so there are only two independent beat
quencies. If there is a definite phase relation between
fields, it is simple to introduce these phases into the het
dyning matrix. Equation~6! is the force used in our hetero
dyning simulations.

FIG. 4. Series of structures during 2-d heterodyning of a triax
field. The view is along the uniaxial field, i.e., normal to the h
erodyned biaxial field. The periodic formation of sheets occ
when the heterodyned field in thex-y plane becomes linear. Thi
linear ac field combines the uniaxial field to create a pure bia
field, and sheets form in this field plane. During gelation this p
duces a honeycomb structure.
02150
r-
In
e
n

e

s

.
e

-

a

t-

e

of
e-
e

o-

Three dimensional heterodyning creates a particle dyn
ics wherein sheets appear in an apparently unpredict
manner normal to the four body diagonals of a cube wh
faces are normal to the field components, especially w
the beat frequencies are related to each other by a rati
large integers. The 3-d heterodyning simulation sequenc
Fig. 5 gives some idea of the complex dynamics.

Gelation

In a gelling liquid the viscosity diverges to infinity at th
gel point. Because of this divergence, a heterodyned par
suspension will no longer be able to couple to the bea
some time before gelation, which has interesting and imp
tant effects on structure. According to dynamical scali
theory this viscosity divergence ish'ut2tgelu24/3 @18#. One
approach to gelation is to incorporate this result into a h
erodyning simulation. The disadvantage of having the Sto
drag diverge is poor computational efficiency—after a tim
the particles essentially quit moving. It is more efficient
chirp the heterodyne frequencies, and the manner in wh

l

s

l
-

FIG. 5. Series of structures during 3-d heterodyning of a triax
field. Sheets form normal to the body diagonals of a cube~white
arrows! whose faces are normal to the cylindrical axes of the He
holtz coils.
8-8



or

n-
t i
e

ea
re

ds
ng
nt
ha
th

is
th
um
e,
a

th
th
fil

s.
l
al
-
a

an
ar

as

ese
the

y
ed
e

nto
y

ible
us-
ted
ld

ould
o-

eed
the

as
his
et

he

to a
ite
of

ibil-
ns.
the
se

e
,

ill
y

ble
in

f

se
2-d

s

USING TRIAXIAL MAGNETIC FIELDS TO CREATE . . . PHYSICAL REVIEW E 69, 021508 ~2004!
this is done is really not too critical. We ran simulations f
100 dimensionless time units, and usedDv5Dv0 /(1
2t/105) as the chirp function, with the initial beat freque
cies close to one reciprocal dimensionless time unit. I
remarkable to us that heterodyning during gelation is so
fective in producing particle foamlike structures that app
to be very close to minimum magnetostatic energy structu
in a triaxial magnetic field.

EXPERIMENTAL RESULTS

Preliminaries

Because these experiments are done in oscillating fiel
is important that the particles do not exhibit a stro
frequency-dependent susceptibility over the experime
range of frequencies. Results for the Ni powder show t
this is indeed the case, with an imperceptible change in
susceptibility from 1 to 103 Hz. It is also important that the
particles exhibit very little remanent moment, since th
could lead to magnetization lags, sample heating, and o
undesirable effects. A minor hysteresis loop at a maxim
field of 123103 A/m confirms that this is indeed the cas
with the zero-field moment being only 13% of the moment
123103 A/m, Fig. 6. Because interactions depend on
moment squared, residual interactions are only 1.7% of
maximum at this field. These Ni particles adequately ful
the requirements of these experiments.

It is helpful in the following to define some convention
The biaxial field will be in thex-y plane and the uniaxia
field along thez axis. The rms components of the biaxi
field will always be equal. A field bias will refer to the rela
tive magnitude of the rms value of the uniaxial field to th
of one component of the biaxial field, a positive bias me
ing the uniaxial field is greater. When the composites

FIG. 6. Magnetization loop for a 6.8-vol % Ni composite show
a remanence of'13% of the maximumM, giving a residual dipolar
interaction only 1.7% of the maximum.
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anisotropic, the specific susceptibilities will be presented
(xxy /f,xz /f), wheref is the particle volume fraction.

The susceptibilities are proportional to the energy of th
structures in the magnetic field. For a field applied along
z axis the specific susceptibility of the composite isx/f
5xp^H loc• ẑ&/H0 . The average energy of a dipole isU5
2 1

2 m0m0^H loc• ẑ&, where U is the change in free energ
when a dipole is brought into the applied field and mov
into its final position in the composite. Normalizing by th
magnitude of the energy of an isolated dipole brought i
the uniform field,12 m0m0H0 , gives the dimensionless energ
ū52^H loc• ẑ&/H0 , andx523bfū.

Isotropic samples

The goal of this paper is to demonstrate that it is poss
to organize the particles in a suspension to improve its s
ceptibility along all directions. Because the energy is rela
to the susceptibilities, structuring in a balanced triaxial fie
would not occur were this not the case, because there w
be no magnetostatic energy gradient to drive particle m
tions. Experiments have shown that structuring does ind
occur, so the remaining issue is quantitative: How great is
increase?

Control

A random particle composite containing 6.8% Ni w
found to have a measured specific susceptibility of 7.1. T
is considerably higher than the prediction of Maxwell-Garn
theory, x/f53b/(12bf), which givesx/f53.33 for b
51 ~although this theory was developed for dielectrics, t
magnetic case is isomorphic!. Much of this discrepancy is
due to the irregular shape of the Ni particles, because
good approximation the susceptibility of a random compos
is determined by the average susceptibility of the particles
which it is composed, where the average particle suscept
ity is the arithmetic average over three orthogonal directio
For ellipsoids composed of a high susceptibility material,
susceptibility along any principal axis is given by the inver
demagnetization factor along that axis, 1/nw . Averaging this
over three directions gives the single-particle valuex/f

5( 1
3 )(1/nx11/ny11/nz). Demagnetization factors obey th

sum rulenx1ny1nz51, sox/f is minimized for a sphere
with nw5 1

3 . Ellipsoids can have a much larger value forx/f.
For particles with extreme aspect ratios this argument w
apply only if the permeability of the material of which the
are composed is extremely large. Additionally, it is possi
that multipolar interactions play a role, but this is doubtful
a random sample at this concentration.

Triaxial field

Structuring a 6.8-vol % sample with a triaxial field o
component frequencies~160, 203.7, 180 Hz! gave x/f
58.4 with rms field amplitudes of 43103 A/m ~50 Oe!,
x/f511.0 at 83103 A/m, rising to x/f513.0 at 12
3103 A/m. This latter value constitutes an 83% increa
over that of the random sample. Subjecting the sample to
heterodyning with a beat frequency of up to 0.4 Hz~203.3,
8-9
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203.7, 250 Hz! gave values as large asx/f513.8 at
83103 A/m, and 14.4 at 123103 A/m. This is more than a
twofold enhancement in the susceptibility, which is quite s
nificant for properties such as magnetostriction, which
pend on the square of the susceptibility. 3D heterodyn
~203.3, 203.7, 204.2 Hz! gavex/f513.8 at 83103 A/m and
13.9 at 123103 A/m.

Samples were also run at higher volume fractions, wh
the specific susceptibilities are higher due to the increa
Lorentz cavity field. A random composite at 20.0 vol % ga
x/f59.7, and a sample 3-d heterodyned and amplit
modulated gavex/f515.2, a 57% increase. In this case t
rms field was 83103 A/m, the heterodyne beats were 0
and 0.2 Hz, and one field component was amplitude mo
lated at 1.2 Hz. At 30 vol % a random sample gavex/f
511.8, a 2-d heterodyned sample at 83103 A/m gave 15.8,
and a 3-d heterodyned sample at the same field gave 17
48% increase over random. Amplitude modulation yielde
comparable result. The benefits of using fields to struct
particles diminish somewhat at higher particle volume fr
tions, but in all cases triaxial magnetic fields significan
improve the composite susceptibility. Other properties, s
as the electrical and thermal conductivity, are increa
much more and a detailed investigation of the electrical c
ductivity is in progress.

Anisotropic composites

It is of some interest to use triaxial magnetic fields
create anisotropic composites, to determine whether the
ceptibilities of such materials can exceed that of cha
formed in a uniaxial field or sheets formed in a biaxial fie
Anisotropic composites can be generated by a variety
techniques.

Chains and sheets

We have previously reported measurements of the m
netic properties of particle chains and sheets of Fe carb
particles, but to provide an accurate comparison to the m
complex structures generated here, we remade these com
ites with Ni particles. FSC’s of chains were made at 6.8
% using rms fields of 43103, 83103, and 123103 A/m.
Perpendicular to the chains the susceptibilities were ne
invariant to the applied field, withx/f55.7, significantly
below that of a random composite. Parallel to the chains
susceptibility increased with the applied field, giving the p
gressionx/f514.9, 16.9, 17.2. Although the single ax
value is high, even at the highest field the specific susce
bility averaged over three directions was only 9.6.

Sheets at 6.8 vol % were run at the same three field
plitudes and at coil frequencies of 160 and 203.7 Hz. Norm
to the sheets a strong suppression was observed,x/f54.3,
5.0, 4.9, and in the plane of the sheets a significant enha
ment was observed, withx/f512.0, 13.6, 14.7. Even at th
highest field the average specific susceptibility is only 11
well below that obtained with triaxial fields.

2-d heterodyning

Samples at 6.8 vol % were made with a heterodyne b
of 0.4 Hz. With the rms field amplitudes balanced at
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3103 A/m we recall this gave an average ofx/f514.4. A
125% bias induces a significant anisotropy, withx/f
5(11.7,20.1) for an average of 14.5. The uniaxial susce
bility is greater than that obtained for chains, and the biax
value is considerably greater. A225% bias givesx/f
5(16.6, 4.4) and an average value of 12.5, which is mu
better than obtained in a biaxial field. The susceptibility a
isotropy is nearly 4.

At a reduced field of 83103 A/m and a beat frequency o
0.2 Hz an isotropic 6.8 vol % sample gavex/f513.0. A
125% bias gavex/f5(9.8, 18.7), for an average of 12.
and a225% bias gave~15.1, 8.0! for an average of 11.9. The
negative bias consistently reduces the average susceptib

3-d heterodyning

Samples at the same particle loading were made with
heterodyne beats of 0.4 and 0.5 Hz. With balanced rms fi
amplitudes of 123103 A/m we recall this gave an average o
x/f513.8. A 125% bias givesx/f5(10.3, 23.1) for an
average of 14.6. A225% bias gives~16.1, 3.9!, for an aver-
age of 12.0. The value 23.1 is the largest we would meas
and is more than 33 that of the random sample. These bias
3-d heterodyning experiments were repeated at a lower
field of 83103 A/m and at beat frequencies 0.1, 0.2 H
Results were similar, but the effects reduced, a125% bias
giving x/f5(10.3, 16.0) and a225% bias giving~16.7,
5.7!.

It became apparent that even small field imbalances co
lead to significant anisotropies in the composites. To inv
tigate this a series of 6.8-vol % samples were made w
biaxial rms amplitudes of 123103 A/m and biases from
240% to140%. The heterodyne beats were 0.9 and 1.0
The results in Fig. 7 show that the uniaxial susceptibil
doubles from a210% to a110% bias although the averag
susceptibility is only slightly affected. Because of this it
difficult to make highly isotropic samples at this low partic
concentration. For example, with no intentional bias t

FIG. 7. The biaxial and uniaxial specific susceptibilities for 6.
vol % Ni composites structured in biased triaxial fields. Even sm
biases create significant anisotropies.
8-10
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USING TRIAXIAL MAGNETIC FIELDS TO CREATE . . . PHYSICAL REVIEW E 69, 021508 ~2004!
three principal susceptibilities can vary610% from the av-
erage.

The comparison in Fig. 8 between chains, sheets,
various triaxial composites summarizes the improveme
triaxial fields enable. The specific susceptibility can be
duced to as little as 3.9 or increased to as much as 23.1
Fig. 9 are shown the magnetization curves for a rand
sample, and the lowest and highest susceptibilities we w

FIG. 8. A comparison between the susceptibilities of 6.8-vol
FSC’s made in uniaxial, biaxial, and triaxial fields demonstrates
advantages of using triaxial fields.

FIG. 9. Full magnetization curves for a random composite at
vol % are compared to FSC’s that had the greatest enhancemen
supression, this showing the full range of modification we were a
to achieve.
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able to produce, all plotted against the internal field.

Higher loadings

At higher particle concentrations the same trends ho
but the effects are reduced. A study of 2-d heterodyning a
vol % was done with a beat frequency of 0.4 Hz and at r
fields of 123103 A/m. Under balanced conditions this gav
x/f515.9. With a 125% bias the values become~14.5,
19.1! for an average of 16.0, and a225% bias gives~15.7,
9.9!. The average susceptibility is only 13% smaller for t
negative bias sample, and the anisotropies are consider
smaller than those at 6.8 vol %.

3-d heterodyning with beats at 0.4, 0.5 Hz gave simi
effects at the same field amplitudes. In a balanced tria
field the specific susceptibility was 16.5. With a125% bias
the specific susceptibilities are~15.3, 19.7!, averaging 16.7,
whereas a225% bias gives~16.1, 9.0!. The average suscep
tibility is 17% smaller for the negative bias case. Amplitu
modulation proved to have little additional effect, givin
~14.3, 18.5! for a 125% bias. At 30.0 vol % the structure
did not become appreciably anisotropic with field biases
625%, though biasing experiments were tried with 2- a
3-d heterodyning and amplitude modulated 3-d heterod
ing.

Memory effects

Particle sheet structures are low in magnetostatic ene
in a balanced triaxial field. So the issue arose as to whe
such structures, once formed, would appreciably reorga
in a triaxial field. To test this we subjected a 6.8% suspens
to a biaxial field for 20 s, then turned on the uniaxial fie
All rms field amplitudes were 8000 A/m and field freque
cies were~150, 203.7, 180 Hz!. The result was a composit
with significant anisotropy,x/f5(13.7, 6.8). These value
are quite close to the values~13.6, 5.0! for sheets formed a
the same field amplitudes, indicating strong memory effe
under these effectively athermal conditions.

SIMULATION RESULTS

There are two principal issues that simulations can
dress: the sensitivity of structure to field biasing, and
efficacy of heterodyning in achieving a structure that mi
mizes the magnetostatic energy and maximizes the ave
susceptibility. Before discussing these issues we will inv
tigate composites produced athermally.

Athermal

Athermal structures were evolved over 25 dimensionl
time units. A random composite at 10 vol % givesx/f
53.4, in accord with the 3.33 prediction of Maxwell-Garn
theory. Chains produced from a uniaxial field givex/f
5(3.0, 8.3) and sheets give~8.1, 1.7!. A triaxial field gives a
structure that looks like a gel of chains withx/f54.8. The
average specific susceptibility of this particle gel is comp
rable to that of the chains, but significantly lower than that
the sheets, 6.0. This is apparently because the particle

e

8
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FIG. 10. A composite produced by athermal 3-d heterodyning is statistically indistinguishable from one produced by simulated
ing.
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structure is trapped in a deep local minima, like a gla
Simulated annealing should give improved results.

Thermal

A 10-vol % thermal simulation in a biaxial field give
results nearly indistinguishable from the athermal simulati
x/f5(8.0, 1.8), and likewise for chains~3.0, 8.1!. In our
previous paper on triaxial fields we found that a large sin
sheet is in fact a very low energy structure@2#. The specific
susceptibilities of a single infinite sheet are~9.7, 1.3!, aver-
aging 6.9, so the thermal biaxial structure is close to t
bound. The simulated ‘‘chain’’ structure is actually compos
of columns and is less anisotropic than an infinite cha
wherex/f5(2.3, 7.5).

In a triaxial field temperature has a dramatic effect, p
ducing a particle foam withx/f55.5. This number is still
not as high as the biaxial average of 6.0, which must be
to the existence of many local minima on the balanced
axial field energy surface. Still, these results lend suppor
the memory effect reported above, where the biaxial fi
was turned on 20 s before the uniaxial field, leaving
sheetlike structure.

In our experiments the Brownian forces are small co
pared to the dipolar forces. This is unavoidable because t
ing down the applied field to the point where Brownia
forces are comparable would quickly result in particle se
mentation. Our solution to this is to attempt to mimick t
effects of Brownian motion through heterodyning. How w
does this coherent effect actually work?

Heterodyning

Heterodyning proved to be effective in increasing t
composite susceptibility. Simulations indicate that 3-d h
02150
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erodyning produces the same particle foam structure
simulated annealing, Fig. 10, and yields the same spe
susceptibility of 5.5. The manner in which the susceptibil
evolves is curious, Fig. 11, because of the pronounced o
lations and the minimum at intermediate times. At ea
times, when the resin viscosity is still low, the suspens

FIG. 11. The average susceptibility as a function of time fo
simulated composite produced by 3-d heterodyning during gelat
Note that the fluctuations diminish near the gel point, and
sample becomes isotropic as the average susceptibility increas
8-12
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dynamics consists of parallel sheets that form normal to
of the four body diagonals of a cube, then fragment a
reorient normal to another body diagonal. As the resin v
cosity increases, the sheets break into smaller fragments
the average susceptibility actually decreases. Finally, at v
large resin viscosities these fragments start to fibrillate i
some mean position, forming an isotropic particle foam t
is a high susceptibility, low free-energy state. We find it
markable that such highly correlated motions achieve
effect of thermal motions in these composites.

Unlike Brownian motion, heterodyning can be anis
tropic. Simulations of 2-d heterodyning result in an orient
particle foam with the cavities aligned normal to the hete
dyning plane, Fig. 4, as in the actual structure. This struc
has significant susceptibility anisotropy, withx/f
5(4.34, 8.12), and a high average susceptibility of 5.60.
periments give a much lower anisotropy, withx/f
5(13.6, 15.9). We believe the roughness of the real parti
tends to lock the particles into structures that cannot fu
relax to their minimum energy, even with the assistance
heterodyning. 2-d heterodyning on the Ni suspensions o
leads to a well-defined honeycomb structure when a pos
bias is introduced.

Biased triaxial field

A plot of the uniaxial and biaxial susceptibilities as
function of bias is shown in Fig. 12, these results obtained
simulated annealing. Most striking is the dramatic effe
even a small negative bias has, in qualitative agreement
the experimental data in Fig. 7. The quantitative effects
even greater than observed in the experiments, again li
due to particle roughness and the fact that Brownian mo
is negligible for the Ni particles, both of which lead to tra

FIG. 12. The biaxial and uniaxial specific susceptibilities f
10.0 vol % created by simulated annealing in biased triaxial fie
A negative bias of a few percent can create an extremely la
anisotropy.
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ping into metastable states. The simulated composites e
form sheet structures with negative bias, because sheet
very low in energy.

Biased heterodyning

Biased 2-d heterodyning studies were conducted at 20
% particles, to keep the cell size small enough to obtain g
statistics. For comparison, at this loading a random comp
ite givesx/f53.8, simulated annealing of chains gives~3.6,
8.3!, sheets give~9.6, 1.9!, and a triaxial field gives 6.7. As
in the 10-vol % case, 2-d heterodyning gives an aver
specific susceptibility comparable to simulated anneali
7.0, but with significant anisotropy~5.8, 9.2!. A bias of
225% reverses this anisotropy,~8.2, 4.0!, and a bias of
125% increases the anisotropy slightly to~5.8, 10.0!.

Studies of biased 3-d heterodyning were conducted a
vol %. In comparison to the unbiased specific susceptibi
of 5.4, a125% bias gives~4.6, 8.1! for an average of 5.8
and a225% bias gives~8.2, 2.1! with an average of 6.2
These are the most extreme simulation values we obtai
The summary of key simulation results in Fig. 13 can
compared to the experimental summary in Fig. 8.

DISCUSSION

In a previous paper@1# we developed a self-consisten
treatment of the susceptibility based on a mean-field assu
tion, using the method of Lorentz. It is of interest to reexa
ine this treatment to understand why it is an inaccurate
proximation for triaxial composites. In the method

s.
e

FIG. 13. A comparison between the susceptibilities of simula
10-vol % FSC’s made in uniaxial, biaxial, and triaxial fields. Th
trends are similar to the real data in Fig. 8, but one real discrepa
is the larger-than-expected values in the biaxial field, and in
negatively biased triaxial field.
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Lorentz the local field is broken into three contributions: t
applied field, the field due to the nearby dipoles in a suita
chosen cavity, and the cavity field. We will examine the ca
where the applied field is along thez axis.

Critique of mean-field theory

Recall that the field produced at a relative positionr by a
particle of dipole moment m is H5@3(m• r̂ ) r̂
2m#/(4pr 3). When a field is applied along thez axis, the
dipoles will magnetize in a complex way. A key approxim
tion we made in our previous paper is that the off-axis co
ponents of the dipole moments are not important in de
mining the local field, so that in the self-consistent treatm
of the moments we setmx5my50. With this approximation
the nearby dipole sum over a spherical cavity is

Hdip,j5
1

2p (
i

mz,i

P2~cosuz,i j !

r i j
3 ~7!

and the dipole field is strictly aligned with thez axis. Here
P2(x)5(3x221)/2 is the second Legendre polynomial a
uz,i j is the angle the line of centers between thei th and j th
dipoles make to thez axis. For this sum to converge, th
cavity must be large compared to the internal structural s
of the composite.

Is this aligned dipole approximationgood? For a 30-vol
% random composite this incurs an acceptable24.7% error.
For 30-vol % chains and sheets the error is21.5%, which is
quite good. But for a 30-vol % thermally annealed triax
composite the error is224.4%, making this approximatio
unacceptable. To emphasize this point, for the random c
posite x/f54.29, for the triaxial FSC the exact value
much higher, 7.42, but using the aligned dipole approxim
tion gives 5.61, so nearly all of the increase due to triax
structuring is missed with this approximation.

Add to the aligned dipole approximation theequivalent
site approximationand the entire triaxial field effect is
missed. Assuming that there are no space-dependent co
tions between the dipole moments in the cavity and th
position, thenmi can be factored out to give

Hdip,j5
2^mz&
2pa3 cz, j ẑ

where cz, j52(
i

S a

r i j
D 3

P2~cosuz,i j !. ~8!

As a consequence of the law of cosines the quantitycz, j
follows the sum rulecx, j1cy, j1cz, j50. In the equivalent
site approximation we assume that for each site thecw, j are
to a good approximation independent ofj.

The field for a spherical Lorentz cavity isHcav5
1
3 M

5(^mz&/4pa3)f ẑ, where the composite magnetization de
sity is M5^m&/v with v54pa3/(3f) the volume of com-
posite per dipole andf the particle volume fraction. To
compute the local field of thej th dipole substitute the
appropriate expressions intoH loc5H01Hcav1Hdip and use
^mz&5(4pa3/3)xp^H loc& to obtain H loc,j5H0
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1b(f22cz, j )^H loc&. Ignoring the critical effect of fluctua-
tions by averaging this expression over all of the dipo
gives^H loc&5H01b(f22cz)^H loc&, where as in our previ-
ous papercz denotes the average for this order parame
The mean local field is then̂H loc&5H0 /@12b(f22cz)#
and the susceptibility along thez axis, defined byM
5xzH0 , is obtained usingM53bf^H loc&,

xz5
3bf

12b~f22cz!
. ~9!

The harmonic average susceptibility over three orthogo
directions is^1/x&2153bf/(12bf) because of the sum
rule cx1cy1cz50. Although this expression for the sus
ceptibility works well for random composites, chains, a
sheets, it fails utterly for isotropic triaxial composites, pr
dicting no possible increase in the susceptibility beyond t
expected for a random composite. In summary, assuming
induced dipoles are aligned with the applied field a
equivalent misses the triaxial effect completely.

Domains

It would be of some interest to have a simple, appro
mate model of the susceptibility of triaxial composites, es
cially the isotropic particle gels and foams, and the orien
cellular structures. A better description derives from reco
nizing that these materials consist of coherent doma
Within these domains Eq.~9! should be a good approxima
tion in principal coordinates for a chain or sheet doma
wherez axis is unique and thex, y axes are equivalent. Fo
isotropic composites domains exist in all orientations, so
the overall composite

^x&5bfF 1

12b~f22cz!
1

2

12b~f1cz!
G ~10!

where we have usedcxy52( 1
2 )cz . This susceptibility has a

minimum atcz50, which corresponds to a random compo
ite. At 10-vol % concentration this giveŝx&/f53.33 for a
random composite. A chainlike domain hascz'20.246 at
10 vol % @1#, so ^x&/f54.1, which can be compared to th
athermal simulation value of 4.8. A sheetlike domain at
vol % hascz'10.428 @1#, giving ^x&/f54.8, which al-
though smaller than the 5.5 obtained from simulation giv
the correct trend. The formation of domains seems to giv
qualitative description of how these materials obtain su
high isotropic susceptibilities.

The concept of domain formation can be used to rel
one set of experimental data to another. At 10 vol % a r
dom sample gavêx&/f57.1. The average susceptibility o
a particle chain sample was 9.6 and for sheets this incre
to 11.4. Once again these values are lower than that of
corresponding particle gels and foams, but the trends
reasonable.

Biased triaxial samples can be viewed as being formed
oriented sheets. For example, with a positive bias tube
structures form. In the biaxial plane the susceptibility is th
just
8-14
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^x&5
3

2
bfF 1

12b~f22cz!
1

1

12b~f1cz!
G

and the uniaxial susceptibility is

^x&5
3bf

12b~f1cz!
.

At 20 vol % a sheet composite givescz'10.393@1# which
gives^x&/f5(4.6, 7.4). The positive biased 2-d heterody
ing result at 20 vol % is~5.8, 10.0!. Other comparisons ca
be made, but the important point is that heterodyned tria
fields tend to make sheetlike structures and the orientatio
these sheets can be manipulated by applying small bia
Overall, better comparisons between the simulated tria
composites and chain and sheet data can be made by
values cz'20.301 @1# for a single long chain andcz'
10.69@1# for a single sheet, but the comparison is still qua
tative.

CONCLUSIONS

We have shown that it is possible to use triaxial magne
fields to create magnetic isotropic particle composites w
n,

m.

y

d.

nt
-

R
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susceptibilities that are greatly enhanced over that of rand
particle composites. This is especially true when heterod
ing of the field components is employed, which manages
mimic the effects of Brownian motion. We have also show
that it is possible to use heterodyned triaxial fields to cre
anisotropic composites with very high susceptibilities in p
ferred directions. Overall the simulations support the exp
mental findings, though the experimental values are lar
most probably due to the reduced average demagnetiza
field associated with the nonspherical particle shape. So
discrepancies between the simulated and real structure
main which are probably due to particle roughness. A sim
interpretation of these results is given in terms of the form
tion of randomly oriented chain and sheet-like domains.
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